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Direct numerical simulations of unsteady channel flow were performed at low to 
moderate Reynolds numbers on computational boxes chosen small enough so that 
the flow consists of a doubly periodic (in x and z )  array of identical structures. The 
goal is to isolate the basic flow unit, to study its morphology and dynamics, and to 
evaluate its contribution to turbulence in fully developed channels. For boxes wider 
than approximately 100 wall units in the spanwise direction, the flow is turbulent 
and the low-order turbulence statistics are in good agreement with experiments in 
the near-wall region. For a narrow range of widths below that threshold, the flow 
near only one wall remains turbulent, but its statistics are still in fairly good 
agreement with experimental data when scaled with the local wall stress. For 
narrower boxes only laminar solutions are found. In  all cases, the elementary box 
contains a single low-velocity streak, consisting of a longitudinal strip on which a 
thin layer of spanwise vorticity is lifted away from the wall. A fundamental period 
of intermittency for the regeneration of turbulence is identified, and that process is 
observed to consist of the wrapping of the wall-layer vorticity around a single 
inclined longitudinal vortex. 

1. Introduction 
The structure of near-wall turbulence has been extensively investigated over the 

past thirty years. I n  the vicinity of the wall, the flow has been found to be highly 
organized, consisting of regions of high- and low-speed fluid alternating in the 
spanwise directions (Kline et al. 1967; Smith & Metzler 1983). The presence of 
streamwise vortices and shear layers protruding from the wall have also been 
documented by various investigators (see for example, Blackwelder & Eckelmann 
1979 ; Johansson, Her & Haritonidis 1987). In  the outer layer, hairpin-like vortices 
have been observed in flow visualization experiments (Head & Bandyopadhyay 
1981) and in numerical simulations (Moin & Kim 1985). An extensive collection of 
recent work on wall turbulence can be found in (Kline & Afgan 1989). 

Despite the large effort devoted to the subject, the basic mechanisms for 
turbulence production and transport in turbulent boundary layers are not well 
understood. Most of the ‘structure’ research has been devoted to the kinematic 
aspects, and a complete and consistent dynamical picture is not yet at hand. The 
primary reason for this lack of understanding is the existence of complex interactions 
between various structures and between the flow in the near-wall region and that in 
the outer layer. 

The objective of this work is to obtain and analyse solutions of the Navier-Stokes 
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equations that represent a more ordered model of wall turbulence than that which 
is found in natural boundary layers. To be more specific, our objective is to identify 
the minimal set of structures that are necessary to sustain a turbulent boundary 
layer, and to construct a flow model consisting of an ordered periodic array of such 
structures. The primary means by which this model is evaluated is by assessing the 
degree to  which it can successfully predict certain essential turbulent statistical 
quantities. If the model is successful, one has a significantly simpler and more 
manageable ‘laboratory ’ in which to  study the mechanics of wall-bounded flows and 
in which to test turbulence control strategies. By construction, this simplified model 
cannot accurately predict some of the higher-order turbulence statistical quantities, 
including two-point correlation functions. Accurate predictions of such correlations 
would presumably require a more elaborate stochastic ordering of the basic flow 
units (as well as smaller scales resulting from their interaction) instead of a doubly 
periodic one. 

The direct numerical simulation technique is used to construct and to  test the basic 
flow unit. The computations reported are not simulations of flows that can be 
realized in the laboratory but, as will be shown below, they represent a basic building 
block from which a self-sustained turbulent flow can be constructed. This flow, or at 
least its low-order statistics, behaves near the wall in much the same manner as the 
experimental ones. The physical parameters of the simulations and the numerical 
details are described in $2, followed in $3  by the spatial scaling of the minimal flow 
module and of the resulting turbulence statistics. I n  $3 newly discovered asymmetric 
solutions for the channel flow will also be described. The turbulence regeneration 
cycle is described in $4, and the structure of the instantaneous vorticity field is 
presented in $5 ,  followed by a short discussion of our observations to date on the flow 
dynamics. 

2. The set-up of the numerical experiments 
This paper describes the result of direct numerical simulations of the initial-value 

problem for a spatially periodic channel flow. The code used is that described by 
Kim, Moin & Moser (1987) and is a fully spectral NavierStokes integrator, using de- 
aliased Fourier expansions in the two homogeneous (z, z )  directions and Tchebichev 
polynomials in the cross-channel (y) coordinate. A sketch of the computational box 
and of the coordinate system is shown in figure 1. The top and bottom boundaries of 
the computational box are physical (no-slip) walls, while the boundaries in both the 
streamwise and the spanwise directions represent the period (fundamental 
wavelength). The flow does not consist of only the structures inside the computational 
box, but of a doubly infinite periodic array of such structures, its images, with 
streamwise and spanwise periods As and A,, and cross-channel extent 2h. 

The simulation imposes a constant instantaneous volume flux in the x-direction, 

and a zero instantaneous averaged pressure gradient in the spanwise direction, i.e. 
the pressure is strictly periodic in z. U is a reference velocity, which corresponds to 
the centreline velocity of a laminar parabolic profile with the same volume flux. 
Throughout this paper we will use the normalization U = 1 and h = 1 .  In these units, 
the laminar value of the vorticity a t  the wall is w, = 2. 
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FIGURE 1 .  Geometry of the computational domain. Pu’ote that the simulation is periodic in both 
the x- and z-directions. 

As a consequence of condition ( l ) ,  the streamwise pressure gradient and the 
spatially averaged instantaneous wall shears, 

Q ( 1 1 )  =- p ’ r g ( x ,  f l , z ) d x d z ,  
hzhz 0 

vary in time, and they will be used as primary diagnostic quantities on the state of 
the flow in the neighbourhood of each wall. Time-averaged wall shears are defined as 

Q,( f 1)  = a( f l ) ,  (3) 

where the overbar is the averaging operator over some specified period of time. It will 
be seen later that  the two walls of the channel may behave differently for fairly long 
periods of time, and the distinction between the two averaged wall shears will be 
convenient on those occasions. For each particular wall, we can then define local 
friction velocities and lengthscales, 

u,( f 1) = (a,& S,( f 1) = (v/Q,)i ,  (4) 

and refer velocities and lengths to local wall units in the usual manner, u+ = u/u, and 
y+ = y/S,. In  addition, a local ‘wall’ time can be defined, which is the minimum 
timescale for events in the wall layer, 

( 5 )  

In the rest of the paper, all quantities with a (+ )  superscript and all primed 
quantities, such as u’, should be understood to  be expressed in wall units. Because 
of the constancy of volume flux, the most convenient Reynolds number to 
characterize the flow is 

t+ = tu,/S, = a, t .  

The computational grid used for most of the runs was 32 x 129 x 16 in x, y, z 
(48 x 129 x 24 before de-aliasing). The spanwise period of the box was varied between 
80 and 160 wall units and its streamwise period between 300 and 600, and the 
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FIGURE 2. Spatial velocity power spectra, along (a) the z- and ( b )  z-axes, at y' = 34. Re = 5000, 
A, = 0.6n, Az = 0.1%. Averaging time for the spectra: 200h/U. Solid line, u'; dashed, v'; dotted, 20'. 

corresponding grid resolution was Az+ = 5-10 and Ax+ = 8-16. Especially for the 
smallest and most interesting boxes, the resolution was comparable to the one used 
by Kim et al. (1987) and was shown there to  be sufficient to resolve the essential 
turbulent scales. A few simulations were run a t  twice the streamwise resolution, 
without any apparent change in the qualitative behaviour of the flow or in its low- 
order statistics. On the other hand, a few runs which were made with only half as 
much resolution in the spanwise direction did appear slightly underesolved on visual 
inspection of the flow fields, and were abandoned. 

Sample streamwise and spanwise power spectra are shown in figure 2. They 
correspond to a typical box at the highest Reynolds number, Re = 5000, but still 
show acceptable drop-offs a t  high frequencies, confirming that the small scales are 
adequately represented. The resolution (accuracy) for smaller boxes or lower 
Reynolds numbers is correspondingly better. Figure 3 shows the two-point spatial 
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FIGURE 3. Two-point spatial autocorrelation function along (a) the 2- and ( b )  z-axes, in the near- 
wall region (y+ = 7.2). In both cases, the plot spans half of the computational domain. Conditions 
and symbols as in figure 2. 

autocorrelation function for the velocity fields for the same case. Its most striking 
feature is the lack of a clear decay to zero at the largest separations, demonstrating 
that the computational box is not large enough for distant points to be uncorrelated 
and that the flow field consists of a relatively ordered (in fact, strictly periodic) array 
of identical structures, each of which is relatively coherent in space. This, of course, 
was the main point of the simulation. 

Time was advanced using the second-order Adams-Bashforth scheme for the 
convective terms and the implicit second-order Crank-Nicholson scheme for the 
linear viscous terms. The maximum CFL number was kept a t  approximately 0.2, 
which can be shown t o  result in a relative time-marching error for the shortest scales 
of - per time step or - 0.1 per eddy turnover time. A test run with half the time 
step revealed no appreciable difference in the results, but the use of a substantially 
higher CFL number in a comparable code is known to have resulted in spurious 
chaotic behaviour (Jime'nez 1990). 
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All of the simulations in this paper were run at  Reynolds numbers between 2000 
and 5000 and on computational boxes that were always shorter than or equal to 
A, = n. At these Reynolds numbers, Poiseuille flow is stable to  infinitesimal pcrtur- 
bations, and any sustained turbulence is subcritical. Under these circumstances the 
question of initial conditions may become important, and the procedure chosen in 
this investigation was to start the flow for each combination of Re and wavelengths 
using as initial conditions the fully developed flow field from a nearby combination 
of parameters. The very first run was initiated as an essentially random finite- 
amplitude perturbation of the parabolic flow a t  a fairly large Reynolds number 
(Re = 7000), and subsequent runs were started incrementally from the results of that 
simulation. 

Since our aim was to determine the absence or existence of solutions for certain 
parameter ranges, this procedure was checked with some care. The flow parameters 
were always changed as little as practical from one run to the next, and the question 
of the independence of the solutions from their initial conditions was tested several 
times. This was done by reproducing the same flow starting from different initial 
conditions (corresponding to different combinations of parameters, some closer than 
others to  the final combination). In  particular, when crossing parameter boundaries 
between the different observed flow regimes, the possibility of hysteresis was 
investigated by approaching a given parameter combination from initial conditions 
corresponding to flows in different regimes. I n  all cascs the simulation was allowed 
to run for a long time, until no apparent change in either the statistics or the 
qualitative flow behaviour was apparent. On no occasion did the long-term 
behaviour depend on the initial conditions, although the rate a t  which the final state 
was approached did depend on the difference between the final parameters of the flow 
and those corresponding to the initial state. 

The desire to observe only statistically stationary flow regimes led to the need for 
long integration times. There are several intrinsic timescales in the flow. The eddy 
turnover time in the dimensionless time units based on U and h is T = O(1). The 
viscous timescale in the sublayer is the wall unit, O(l/Q,) = O(l/lO). The viscous 
timescale associated with the outer flow is much longer, O(Re), and it appears in the 
simulation as a slow relaxation of the statistics in scales T = O( 1000). An additional, 
very important, intermediate timescale, T = 0(100), which is characterized by an 
O( l ) ,  oscillation of the flow statistics, was discovered during this investigation. This 
latter timescale, together with the viscous relaxation, required running times of the 
order of 1000-3000 before a particular flow could be considered asymptotically 
steady, especially a t  the higher Reynolds numbers. This corresponds to 3 4  x lo5 
time steps, and was possible only because of the relatively fast execution times 
associated with the small domains used in the simulation, which allowed good spatial 
resolution using relatively few spectral modes. Still, each time step required 0.7 s on 
a Cray Y-MP, requiring between 50 and 100 CPU hours for each of the simulations 
in which turbulence was sustained and the flow was followed long enough to establish 
its asymptotic behaviour. 

3. Box minimization and statistical properties 
Three relatively low Reynolds numbers were analysed : 2000, 3000 and 5000. The 

lowest one is generally considered transitional by most investigators, although some 
form of turbulence can be sustained a t  much lower Reynolds numbers ( -  lOOO), and 
large-scale intermittency disappears at Re z 1800 (Pate1 & Head 1969; Nishioka & 
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FIGURE 4. Spanwise wavelength of the computational box in wall and absolute units. vertical lines 
mark limits at which simulations could not be sustained: 0, Re = 2000; A, Re = 3000; 0,  Re = 
5000. Open symbols are two-walled turbulence, closed symbols are one-walled (see 53.3). All 
simulations use A, = K. Inclined lines just bracket related data. 

Asai 1985). On the other hand, most authors agree that channel flow is fully 
developed above Re = 3000-3800 (Eckelmann 1974). For each Reynolds number, we 
sought the smallest computational box that would sustain ‘turbulence ’ indefinitely. 
The basic requirement was that the flow remained non-laminar, stochastic and three- 
dimensional. Note that most of the effort was spent locating the lower boundary of 
the domain size rather than the upper-critical boundary which, as it turned out, 
existed at Re = 2000. 

3.1. Scaling of the minimal domain 

A detailed fine-tuning of the spanwise dimension of the box was made at the 
streamwise length of nh. This streamwise wavelength was selected as an immediate 
value between two numerical experiments with lengths 2nh and &h. In  the latter 
case turbulent fluctuations decayed, whereas in the former the box contained several 
structures. For each Reynolds number in figure 4, the spanwise dimension of the 
computational box, measured in wall units, is plotted against its value measured in 
outer units. The vertical lines mark the boundaries beyond which no turbulent flow 
could be maintained. It can be seen that the critical channel span varies for different 
Reynolds numbers when expressed in outer units but is roughly the same in wall 
units. The critical value is around A: = 100 or, more precisely, between 85 and 110. 
This is in very good agreement with the experimentally measured mean streak 
spacing in the viscous sublayer reported by Smith & Metzler (1983) who also found 
slightly lower spacings at higher Reynolds numbers. The coincidence of the lower 
critical value for the spanwise width of the computational box and the accepted 
mean value for the streak spacing provides a dynamical significance to the latter 
quantity. A number of investigators, mostly using hydrodynamic stability analysis, 
have discussed the significance of the universal mean streak spacing in turbulent 
boundary layers (e.g. Zhang & Lilley 1981; Jang, Benney & Gran 1986). Present 
results provide strong evidence for its dynamical importance. 

Three less detailed surveys were also conducted to determine the minimum 
streamwise length a t  each Reynolds number for a value of A, slightly above its 
minimal value. Plots of A: IJS. A,/h for each Reynolds number are shown in figure 5 .  
There appears to be a minimal streamwise period of about A: x 250-350, which 
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FIQURE 5. Computational box streamwise length in wall and absolute units. Vertical lines mark 
limits at which simulations could not be sustained. 0, Re = 2000, A, = 0.34~;  A, Re = 3000, A, = 
0.30~;  0, Re = 5O00, A, = 0.18~. Open and closed symbols as in figure 4. 
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FIQURE 6. Instantaneous averaged wall-shear history for a minimal turbulent channel. Initial 
transients have been discarded. Only one wall is represented. Re = 5000. Solid line: Az x A= = 
~ ~ 0 . 1 8 ~ :  dashed: 0.5~x0.181t. 

becomes shorter as the Reynolds number increases, although a detailed survey 
covering both A, and A, would be needed to decide whether it scales in inner or other 
variables. Apparently, this is the lower bound for the streamwise length of the eddies 
in the wall layer, or for the minimum streamwise spacing between eddies of 
dynamical significance. It is remarkably near to the value of 440 for the mean 
spacing of vortical structures in the wall region reported by Clark & Markland (1971), 
as well as to the spacing between substructures within turbulent boundary layer 
spots, A: % 200-500, reported by various investigators (see Sankaran, Sokolov & 
Antonia 1988, and references therein). 

3.2. Sample statistics 
A time history of the plane-averaged shear, Q, on one wall is shown in figure 6.  
Stochastic and intermittent behaviour of the wall shear stress is clearly discernible. 
The intermittency is prominently exposed by the limited size of the computational 
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FIGURE 7 .  Mean streamwise velocity near the wall. 0 ,  Re = 3000, A, x Az = R x 0 . 3 0 ~ ;  
A, Re = 5000, A, x A, = 0 . 6 ~  x 0 . 1 8 ~ .  Dashed line is a+ = 2.5log yf+5. 
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FIGURE 8. Reynolds shearstress normal id  with the shear velocity. Re = 5000, A, x A, = 
0 . 6 ~  x 0 . 1 8 ~ .  Solid line: -u'v'; dashed: -u'v'+ ( l /Re )  &lay. Symbols from Wei & Willmarth 
(1989), Re z 3850. 

box in the (z, 2)-plane and the correspondingly small statistical sample. With a very 
large computational box, the spatial averaging in equation (2) would have involved 
several eddies and the temporal fluctuations in figure 6 would have been significantly 
reduced. The equivalent cancellation of fluctuations for this small box involves 
averaging the behaviour of a single structure over a long time. The statistical 
quantities in the remainder of this section were obtained using plane and time 
averaging, which will be denoted by an overbar as in equation (3). 

Mean velocity, a+, profiles for Reynolds numbers 3000 and 5000 are shown in figure 
7. The profile for the Re = 3000 case is in excellent agreement with the standard 
logarithmic law for turbulent channel flow, while the one for Re = 5000 is in good 
agreement in the inner region but exhibits only a minimal log layer and a wake region 
which is uncharacteristic of channels. At this latter Reynolds number, the typical 
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FIGURE 9. Root-mean-square velocity fluctuations normalized by the wall shear velocity, in global 
coordinates. Solid line : ( u ’ ~ ) ; ;  dashed : (d2);. Re = 5 0 0 0 , 0 . 6 ~  x O.l&. Symbols are experimental 
values fromWei & Willmarth (1989) a t  Re % 3850: 0, (u’~):;  A, (d2)k (Wei & Willmarth did not 
measure (w‘+). 
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FIGURE 10. Near-wall turbulent intensities in wall coordinates. Solid lines : Re = 3000, A, x A* = 
x x 0.371; dashed: Re = 5000, 0 . 6 ~  x 0 . 1 8 ~ .  Symbols as in figure 9. 

spanwise box width, A: = 100, corresponds in outer coordinates to h,/h = 0.5. This 
is apparently too small to accommodate some of the large-scale structures present in 
the outer layer and leads to this and other abnormalities in the statistics in that part 
of the flow. The standard derivation of the logarithmic velocity profile involves the 
interplay of eddies whose extent normal to the wall scales with their distance from 
it. One would expect that a constrained spanwise size would also alter their y-extent 
and that would in turn disturb the logarithmic ~ region. 

In  figure 8 the Reynolds shear stress, -u’v’, and total stress profiles, -u’v’+ 
( l / R e )  aalay,  show that the flow has reached statistically steady state. Turbulent 
intensities are shown in figures 9 and 10, including the recent measurements of Wei 
& Willrnarth (1989) a t  a Reynolds number intermediate between the two simulations. 

- 
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FIGURE 11.  Instantaneous w, map for an (z,y) section of a one-sided turbulent channel. Note 
different levels of activity near both walls. Re = 2000, x x 0.3% Isolines increment : 0.5 ; solid lines : 
w, < 0. 
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FIGURE 12. Instantaneous averaged wall-shear histories at the upper and lower wall of a one-sided 
turbulent channel. Initial transients have been discarded. Re = 3000, A, = x ,  A, = 0 . 2 6 ~ .  
Qh/U = 2 corresponds to laminar flow. Solid line: lower (active) wall; dashed: upper (quiet). 

Near the wall the agreement with the experimental data is very good, while in the 
outer layer there are large discrepancies, due most probably to the constraining effect 
mentioned above. 

3.3. One-sided turbulent channel Jlow 
One of the most interesting observations in this work was the existence of stable 
states in the channel in which turbulent flow existed only near one wall. This was the 
predominant state for the three Reynolds numbers studied when the span of the 
computational box was near its minimal value, and i t  was the only state observed a t  
Re = 2000. Contours of the spanwise vorticity, wz, in an (x, y)-plane are shown for the 
latter case in figure 11. Turbulence is clearly confined to near the lower wall, but the 
flow near the upper one is not steady; it has a small temporal variation but is nearly 
two-dimensional (see figure 12 and the global profiles in figure 14). 

Occasionally, the turbulent state was observed to  shift from one wall to the other. 
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FIGURE 13. Averaged wall-shear histories at the upper an lower walls in a predominantly one- 
sided turbulent channel. Note that total time is three times longer than in figure 12. Re = 2000, 
A, = A, A, = 0 . 3 5 ~ .  
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FIGURE 14. Root-mean-square velocity fluctuations normalized by the wall shear velocity, in 
global coordinates, for a predominantly one-sided channel. Average includesonly periodsin which 
turbulencEesides near the wall represented here. Solid line: 4 / U ;  dashed : (u ’~ ) ; ;  dotted: (da);; dot- 
dashed: (UP);. Re = 5000, R x 0 . 1 6 ~ .  Turbulent intensities are expressed in wall units. 

When this happened, the ‘quiet ’ wall underwent transition and for a while both walls 
were turbulent (figure 13). However, this state was not stable, and in a relatively 
short time turbulence at one of the walls decayed. This transition process was not 
studied in great detail, but the visualization of a few flow fields suggests that it 
corresponds essentially to the A-vortex mediated laminar-turbulent transition 
described, for example, by Kleiser & Laurien (1985). 

The switching of the active walls was a relatively rare event with a very long 
characteristic time ( tU/h x 1000). Between those occasions, the flow remained 
essentially one sided. As far as we are aware, one-sided turbulent channels have never 
been observed experimentally, although our results suggest that they might occur 
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FIQURE 15. Averaged velocities near turbulent wall on one-sided channels. Average includes only 
periods in which turbulence resides near the wall represented here. 0, Re = 2000, A x 0 . 3 3 ~ ;  0,  
Re = 3000, x ~ 0 . 2 6 ~ ;  A, Re = 5O00, A ~ 0 . 1 6 ~ .  Dashed line is FP = 2.5logy++5. 
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FIQURE 16. Fluctuating intensities corresponding to runs and conditions in figure 15. Solid lines: 
Re = 2000, x x 0.33x; dashed : Re = 3000, x x 0 . 2 6 ~  ; dotted : Re = 5o00, A x 0.16%. Symbols from 
Wei & Willmarth (1989) as in figure 9. 

naturally at low Reynolds numbers. However, some related numerical results have 
been previously encountered in the context of transition. On the basis of secondary 
stability theory, Herbert (1983) observes that the subharmonic mode for transition 
in a channel should occur on a single wall at a time, and May & Kleiser (1985) have 
observed this feature in direct numerical simulations of transitional channels. The 
growth rates of the turbulent intensities when the turbulence switches between walls 
agree approximately with Herbert's most unstable eigenvalue. On the other hand, 
the switching period between walls seems to correspond to a different phenomenon, 
occurring at essentially random times, on a scale of the order of the viscous time, 
O(Re). 

The mean velocity and intensity profiles for one-sided channels at  Reynolds 
numbers from 2000 to 5000 are shown in figures 14-16. The asymmetry of the profiles 
is apparent in the linear plots of figure 14, as is the two-dimensionality of the quiet 
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FIGURE 17.  Time-averaged wall stress, measured as Re,, us. Az and Reynolds number. Symbols are 
as in figure 4, but some data points here have A, 9 K. Lines are experimental correlations from 
Dean (1978). 

wall that is implied by the small values of (3);. Of interest is the disappearance of 
the logarithmic layer (figure 15) a t  Re = 5000, which is here even more complete than 
in the two-sided case (see $3.2). Even more noteworthy is the fact that the turbulent 
intensities in the near-wall region are generally still in good agreement with the 
experimental data (figure 16) even in the presence of a severely disturbed outer layer 
which, as in the case of two sided turbulent channels, agrees poorly with experimental 
data. However, the Reynolds-number effect clearly apparent in the outer part of the 
layer is in agreement with a similar trend observed by Wei & Willmarth (1989). I n  
experiments ranging from Re = 3850 to 53000. 

3.4. Wall stresses 

Another standard measure of the adequacy of the simulated turbulent channel flow 
is its conformity to  Dean’s (1978) correlation. Using numerous experimental data, 
Dean found an empirical correlation between the wall skin friction and the bulk 
velocity in turbulent channel flows. The Reynolds number based on shear velocity, 
Re, = u,h/v, is shown for all the computational cases in figure 17. The lines are from 
Dean’s formula, and different symbols are used for two-sided (open symbols) and 
asymmetric (closed symbols) turbulent computations. For each Reynolds number, 
results are shown for the diffekent spanwise dimensions of the computational box. 
Except for the three narrowest cases a t  the highest Reynolds number, Re = 5000, the 
numerical results are in remarkably good agreement with the experimental data. The 
cases that do not agree with Dean’s correlation are those that lack a significant 
logarithmic layer in the mean velocity profile. 

I n  summary, low-order single-point turbulence statistics in the wall region are 
accurately predicted in the minimal channel simulations so long as at least the inner 
portion of the logarithmic layer is reproduced. The outer portion of the boundary 
layer does not appear to  have significant influence on the inner-layer statistics (even 
in the extreme cases in which only one wall was turbulent). This is consistent with 
the idea that the logarithmic layer is the region of overlap between the inner and 
outer regions. The fact that the minimal channel faithfully reproduces many 
important features of the ‘natural ’ channel is indeed surprising and may have 
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profound implications. It suggests that the basic turbulence dynamics in the wall 
region is confined to a rather small region in space. The minimal channel imposes a 
periodic order surrounding the basic volume, and the results show that this periodic 
model, in which most of the long-range interactions have been neglected, retains 
enough structure to reproduce a t  least the low-order statistical quantities in this 
region. On the other hand, it is certainly conceivable that other elementary flow 
units, or other long-range orderings, can lead to  similar statistical behaviour. 

Owing to  its physical simplicity and to  the small computational effort required, 
when compared to the full-scale simulation of natural channels, the minimal channel 
is an ideal laboratory to study the dynamics and structure of wall-bounded flows and 
to test wall boundary conditions for turbulence control applications. 

4. Intermittency 
We have shown that the minimal channel reproduces several of the statistical 

properties of natural turbulent flows in the near-wall region, while providing a 
relatively compact computational model. It is a much simpler system than either the 
numerical simulation of a full-sized channel or a real experiment and provides the 
opportunity to observe individual turbulent structures in an idealized setting, 
making them much simpler to  study and to analyse. It provides some hope of 
analysing wall turbulence in the same quasi-deterministic spirit that has been 
common for some time in free-shear flows. At least two potentially important 
ingredients are absent from these simulations. First the random occurrence in space 
and time of structures in natural turbulent wall layers has been replaced by a 
periodic order. Second, the flow in the outer layer and its influence on near-wall 
events are not adequately modelled (as shown in the previous section). The statistical 
results of the previous section suggest that  the first effect is not important, while the 
second has some effect on the wall shear levels and on the structure of the flow above 
yf x 30, but only when it is strong enough that the logarithmic region is cancelled. 

In  this and the following section we shall study the structure of the near-wall 
region of the minimal channel using flow-field visualizations of individual events and 
time sequences of those events. Enough fields have been observed to  give some 
confidence that the features described here are representative of a large percentage 
of the time in the minimal channel. Whether or not they are representative of events 
in natural flows will have to be established later by a comparison with full-scale 
simulations. 

The most striking characteristic of the time histories in figures 6, 12, and 13 is their 
high degree of fluctuations. The plane-averaged wall shear oscillates by a factor of 
almost two and does so, moreover, in a random but quasi-periodic fashion. During 
the active periods of this cycle, i t  is not only the wall stress that ‘blooms’, but all the 
flow statistics as well. Figure 18 is an enlarged plot of two of the periods in figure 13, 
showing the averaged wall shear, maximum values of the three vorticity components, 
both close to and away from the wall, and the instantaneous Reynolds stress, - u’v’. 
These maxima are taken over the whole computational box and measure the 
maximum activity anywhere in the flow. It is clear that all of the quantities reach a 
maximum during the same part of the intermittency cycle, especially below y+ = 10. 
It is interesting to compare the Reynolds stress values in figure 18 with the averaged 
profile in figure 8. The maximum values encountered here are, even in the quiescent 
phases, an order of magnitude larger than the averaged values in the profile. The 
experimental definition of a ‘burst’ has been often taken as a region of the flow in 
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which the Reynolds stress (or its second-quadrant component) is larger than the 
averaged value (Bogard & Tiederman 1986). The large ratio of the instantaneous 
maximum value to the average value suggests that, from the point of view of 
experimental measurements, some point of the flow is always ‘bursting’. The 
bursting phenomenon reported by experimental investigators is simply the passage 
of these active regions past the measurement point (see also Kim & Moin 1986; Moin 
1987). 

From this point of view, the intermittency cycle that we are studying is a 
modulation of the bursting activity in time and corresponds to  a different 
phenomenon. I ts  details will be studied in the next section by visualizations of the 
flow field; here we shall just discuss its temporal behaviour. A simple counting of 
peaks in any of the shear histories shows that the basic time period of the 
intermittency cycle is UT/h = O(100). None of the records generated in our 
simulations contains more than - 30 periods, and this precludes a more precise 
measurement of the timescale. Power spectra of the time series suggest that the 
period increases with decreasing Reynolds number. The length of the data records is 
not sufficient to permit a more definite statement on the length of the period or to 
speculate on possible scaling properties, but the trend is clear and is confirmed by 
visual inspection of the time records. This is a very long timescale, difficult to 
reconcile with any obvious property of the flow or of the simulation. In  the global 
units used above it represents many eddy turnover times. In viscous wall units, the 
different values are slightly more uniform, but they still range from Q, T x 600 to 
1500. 

The residence time of an eddy in the computational box is roughly UT,/h = 
h,/h x 1.5-3 and is quite different from the intermittency period. Since the flow is 
spatially periodic, this timescale should not appear in the results except by way of 
some numerical error, and it was therefore tested with some care. In  figure 6, the two 
traces represent identical flows but with streamwise computational box lengths that 
differ by a factor of two. No appreciable difference in the periods can be observed, 
making it unlikely that the intermittency observed here is a numerical effect 
connected to  the periodic boundary conditions. 

Whatever the mechanism for this cycle is, i t  appears to be local to each wall. The 
correlation coefficient between the shear histories at the two walls of a single channel, 
Q(1) and Q( - l), is always small, lcorrl < 0.15, when both walls are turbulent, 
indicating that the intermittency cycle acts independently a t  each wall. I n  contrast, 
when only one wall is turbulent, that  correlation is larger, corr x -0.8, suggesting 
that the small excursions of the shear in the quiet wall are passive responses to  the 
activity in the turbulent one. Note that the correlation would be zero if one wall was 
steady and laminar. 

Figure 19 shows the decay of wall shear in a computational box which was 
initialized from a sustained turbulence condition, but with a spanwise width too 
small to continue to  sustain turbulence. It is interesting to note that the 
intermittency cycle is still present and that the peaks of each cycle seem to have 
roughly the same magnitude as in the self-sustaining flow. Each time the wall 
‘ blooms ’ it  does so in full force, and even the rate of decay of the wall shear after each 
event is roughly the same as in the sustained case. The quiescent states to  which it 
decays between bursts become more two-dimensional and closer to laminar, and it 
takes longer for the activity to regenerate. When finally one event fails to 
materialize, the flow decays rapidly to a laminar state. This suggests that  each of the 
intermittent events regenerates the turbulent activity in the neighbourhood of one 
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Only one wall is FIGURE 19. Wall-shear history for a decaying minimal turbulent channel. 
represented. Re = 5000, x x 0 . 1 5 ~ .  Flow was initialized from the asymptotic solution in a x x 0 . 1 6 ~  
box. 

wall and that the rest of the cycle, a t  least in that region, is simply the decay of this 
activity. In  the following section we examine the structure of the wall region and its 
dynamics during the intermittency cycle. 

5. The structure of the vorticity field 
We will concentrate here on the instantaneous structure of the vorticity field, 

particularly a t  Re = 2000, a t  which the flow is turbulent a t  only one wall. This value 
was chosen because the flow features are ‘cleaner’ a t  low Reynolds numbers but, as 
mentioned below, similar features are observed a t  higher Re, and in cases in which 
both walls are turbulent. The field that we will describe corresponds to Ut/h = 1187 
in the simulation used in the previous section (figure 18) to study the intermittency 
cycle. Flow fields for that particular sequence, extending from Ut/h = 1100 to 1225, 
were stored a t  time increments U&/h = 3, and analysed visually. The results from all 
of these flow fields were consistent with the one described here, although there were 
some variations of the relative strength of the different flow elements during the 
intermittency cycle. Those variations will be described later in this section, but the 
structure that we will discuss below can be considered typical of the whole cycle. An 
earlier analysis of a similar one-sided flow (at Re = 7000) was presented in Jimenez 
(1988) with basically similar results. I n  addition, three other time sequences of two- 
sided turbulent channels, at Re = 3000 and 5000, were also stored and analysed (at 
a somewhat lower temporal resolution) with entirely consistent results. In  all of these 
cases, the flow fields were found to  contain the main structural ingredients (sublayer 
streaks, streamwise vorticity, and near-wall shear layers) observed by previous 
investigators in the near-wall region, both experimentally and in numerical 
simulations. The main difference is that, in contrast with previous observations, our 
computational box contains a single or, at most, two distinct copies of each of those 
elements. 

Figure 20 shows contours of the three vorticity components in an (2, 2)-plane near 
the wall. The maps for w, and wy clearly show the presence of a single low-velocity 
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FIGURE 20. Horizontal (5,  z )  section of wall region at y' = 2.3. Flow is from left to right. Re = 2000, 
corresponding to t = 1187 in figure 18. Re, = 97.7; figure displays whole computational box, A, x 
A, = x x 0 . 3 5 ~ ;  (a )  w z ;  isoline increment = 0.5. Solid lines: w, < -5;  dashed: -5 < w, < -2. ( b )  w r ;  
isoline increment = 0.1. Solid lines: wy >, 0.3; dashed: wy < -0.3. (c) w,; isolines, same as for wy. 

streak that fills the whole central streamwise strip of the computational box. Note 
that in the immediate vicinity of the wall, u z - ywz, and the contours of w, indicate 
the level of streamwise velocity a t  a fixed y. In  this region, wy is dominated by au/az,  
and the wy structures indicate the 'sidewalls ' of the low-velocity streak. Finally, the 
definition of vorticity and the continuity equation give, near the wall, 

and since the evidence is that  in this region a/ax 4 a/&, the velocity normal to the 
wall is dominated by the distribution of w,. The same is true for the other transverse 
velocity component, w. This distribution is much less elongated than that of the 
other two vorticity components, and the section in figure 20 shows two discrete 
vorticity patches, neither of which extends the full streamwise length of the box. 
Note that because the computational box is the elementary cell of a two-dimensional 
periodic arrangement, the positive streamwise vortex that appears in three corners 
of the figure is actually a single structure, and the basic arrangement of streamwise 
vorticity is a checkerboard distribution of alternating signs on opposite sides of the 
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low-speed streak. A better understanding of the geometry can be obtained from 
figure 21 (plate l ) ,  which is a three-dimensional view of the same field further away 
from the wall, yf = 20-50, showing the two streamwise vortices in relation to the 
low-w, streak. The streamwise vortices are fairly long, filling most of the length of the 
box, and they are inclined with respect to the wall. The two vortex patches that 
appear in the sublayer are the ‘roots’ where the longitudinal vortices approach the 
wall. 

A streamwise (x, y) section of the w, field along the centre of figure 20 was shown 
in figure 11.  Its most prominent feature, the strong shear layer protruding from the 
lower wall, corresponds to similar structures observed previously both exper- 
imentally and in numerical simulations (Johansson et al. 1987; Jimdnez et al. 1988). 
These shear layers are highly three-dimensional, as shown in the (y, z )  sections of the 
same field in figure 22(a, b ) .  The two planes for these sections were taken so as to 
intersect the positive and negative streamwise vortices in figure 20 a t  their strongest 
locations. I n  can be seen that the shear layers protrude from the wall in the 
streamwise direction and are also inclined across the span. I n  fact, they are rooted 
to the sides of the low-vorticity sublayer streak, and their emergence from the wall 
coincides with the wy structures in figure 20. Note that the spanwise slopes of the 
shear layers in the two sections are opposite to one another. 

A better understanding of the relation between the two transverse components of 
vorticity can be gained from figure 22 (c ,  d ), which shows vortex traces in the ( z ,  y)- 
plane. These are not vortex lines but field lines of the transverse vorticity (w, ,wy)  
field, and they represent the intersection with the transverse plane of individual 
‘vortex surfaces’, each of which is formed by an array of vortex lines which are not 
themselves restricted to a given cross-plane. These surfaces are especially meaningful 
when the streamwise component of vorticity is weaker than the transverse 
components, in which case their intersections with planes perpendicular to the 
weaker component provide an indication of the direction and magnitude of the 
vorticity. This is the case here, where the magnitude of w, near the wall dominates 
the other two components (see figure 18b, and the values of the contours in figures 
20 and 22) .  Except for the effect of viscous diffusion, a vortex line belonging to a 
particular surface stays in it,  and the surfaces themselves evolve like material 
surfaces. 

The vortex traces in figure 22 (c ,  d )  have been drawn to represent the evolution of 
the strong layer of transverse vorticity generated by the pressure gradient a t  the 
wall, which is the dominant flow feature in the near-wall region. The field lines cover 
only those points at which the transverse component is large, (w;+w$ 2 0 .5U/h .  It 
is clear from the figure that whenever this layer is lifted away from the wall, it leaves 
a transverse vorticity ‘gap’ in the wall layer, which is the low-velocity streak. The 
vortex lines lifting away from the wall a t  the edges of the gap form the wy sidewalls 
of the streak, and the outer boundary of the lifted layer forms the detached shear 
layers (figure 2 2 ~ 4 ) .  An examination of this figure also provides an explanation for 
the curious phenomenon of the regions observed near the wall in which w, has a sign 
opposite to  the mean wall shear. These regions can be observed in both figures 11 and 
22(a, b ) ,  and cannot be explained in terms of a gradient diffusion process. It is 
evident from the vortex traces that they represent locations in which the original 
spanwise vortex layer has been deformed enough to be ‘overturned ’, so that the 
same vortex lines now represent a spanwise vorticity component opposite to  its 
original sign (Jim6nez 1988). (We now believe the different explanation of this 
phenomenon contained in Jim6nez et al. 1988 to be incorrect.) 
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FIGURE 21. Threedimensional view of the flow field in figure 20. Flaw coming out of the page. Horizontal 
plane is y +  = 10, with isolines forwz2 -2.5 (by 0.25). Surfaces are ox = -0.75 (blue), and 0, = 1.1 (red), 
between y +  = 20 and 50. Figure displays full horizontal extent of computational box. 

X 

FIGURE 24. Three-dimensional view of wz region near wall. Flow coming out of the page, corresponding to 
the field in figures 20-23, between the two sections used for figure 22. Solid surface is o, = -2. 

(ficing p. 232) JIMBNEZ & MOIN 
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FIQURE 22. Transverse (2, y) sections of channel. Field is the same aa figure 20. Flow coming out 
of the page. Figure displays whole computational box, A, x h = 0 . 3 5 ~  x 2. (a, c, e) 5 = 0.49 in figure 
20; (b,  d , f )  x = 2.26. (u, b )  w,, Isoline increment = 0.5; solid lines: w, < 0. (c, d )  Vortex traces, see 
text. (e , f )  w,, Isoline increment = 0.1; solid lines: w, 2 0.3; dashed: w, d -0.3. 
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FIGURE 23. Transverse velocities overlaid on the w, map in figure 2 2 ( e ) .  

Figure 22 ( e ,  f )  contains contours of streamwise vorticity, w,. There is no clear 
spanwise symmetrical pairing of opposite signs, but there is a tendency for vortices 
of opposite sign to stack on top of each other. Thc probable origin of some of these 
streamwise vortices can be determined. Net circulation can only be produced by 
diffusion a t  the wall, and it is clear from figure 22 (a ,  b )  that most of the vorticity in 
that region is spanwise in accordance with the presence of mean shear. Further from 
the wall where the large streamwise vortices are located (y’ = 15-40), this is no 
longer true, and the three vorticity components have comparable magnitudes. 
Therefore, a likely origin of w, is the tilting of the original w, vortex lines. We have 
already seen that this is the probable origin of wy. When the streamwise vortices in 
figure 22 are compared with the transverse vortex traces, it is seen that the sign and 
position of the large positive vortex in figure 22 (f) as well as that of the compact 
positive vortex in 22(e)  and of the two large but more diffuse negative vortices to 
their left, are consistent with the result of the transverse vortex lines being tilted 
forward by the prevailing shear. These four regions are just different sections of the 
two streamwise vortices shown in figure 21. The vorticity peaks a t  the wall below 
these large vortices are also easily explained by the diffusion of the wall secondary 
vorticity required to satisfy the no-slip condition. This leaves part of the streamwise 
vorticity unexplained, including the two vortices farthest from the wall in both 
figures. They are probably the result of convection of secondary wall vorticity away 
from the wall by the primary vortices. This process, in which a vortex near a no-slip 
wall induces secondary vorticity of opposite sign at the wall, carries it away to 
generate a new free vortex and then couples with it to form a rising pair, has been 
nicely demonstrated in two-dimensional computations of vortex dipole rebound by 
Orlandi (1990). We have also found evidence of the same process, involving single 
vortices instead of dipoles, during the ‘blooming ’ period of the intermittency cycle. 

As discussed above, the transverse velocities near the wall are controlled by the 
distribution of wz,  as is clearly shown in figure 23 in which velocity vectors are 
overlaid on the vorticity contours of figure 22(e) .  The transverse velocities in turn 
contribute to the deformation of the transverse vorticity, and when figures 22 ( a )  and 
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FIGURE 25. Time sequence of the evolution of the wall vorticity layer as it approaches the peak of 
the intermittency cycle. Conditions are as in figures 22-24. Flow coming out of the page. Vortex 
surface was based on the left edge of the computational domain at y+ = 6. Time increases from left 
to right, top to bottom. Ut/h = 1184 to 1199 by the third frame. Full computational box. 

22 ( d )  are considered together, it is apparent that  the transverse structure of the flow 
can be explained as the result of the wall layer being pulled away from the wall by 
the transverse velocities induced by the streamwise vorticity. The three-dimensional 
arrangement of the high-w, layer shown in figure 24 (plate 2) clearly shows the 
detached shear layer being pulled sideways from the wall. The two large streamwise 
vortices of figure 21 are above the layer, with the positive one located at the right of 
thc picture and the negative one at the rear left. The groove in between is the gap 
left in the layer by the detached vorticity and constitutes the low-velocity streak. 

Since much of the streamwise vorticity can probably be attributed to the forward 
tilting of the lifted layers, the whole process is very reminiscent of the classical 
‘hairpin ’ model of transition and turbulence. In  this case, however, the hairpin is 
asymmetric, and only one leg collapses into a compact vortex, while the other one is 
stretched into a more diffused vortex sheet. Such asymmetric hairpin vortices are 
typical of natural turbulent boundary layers (Moin 1987). As a consequence, the 
explosive uplifting due to the formation of symmetric pairs is missing, and the whole 
structure remains relatively stable for fairly long periods of time. In fact, individual 
vortices and shear layers can be followed during most of the intermittency cycle, 
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FIGURE 26. Sketch of the lifting of the wall vorticity by an inclined longitudinal vortex. The front 
edge of the lifted layer appears to move forward aa the wrapping continues. Flow coming out of 
the page. 

during which time they are convected downstream for distances of the order of x = 
100h, equivalent to several thousands of wall units. This might be related to the very 
long streamwise extent of sublayer streaks observed in natural channels. 

Figure 25 provides a different view of the lifting of the wall vortex layer by the 
streamwise vortex. Each frame in the time sequence shows an instantaneous view of 
the position of the sheet as i t  approaches the active peak in the second intermittency 
cycle of figure 18 ($4). The surface is marked by individual transverse vortex traces 
initiated a t  y+ x 6 in a relatively undisturbed part of the layer. The lifting of the 
layer away from the wall over the low-velocity streak is evident, as is the fact that 
the streak itself is wavy. The frame of reference moves downstream from one frame 
to the next to keep the roots of the streamwise vortices in the sublayer approximately 
fixed (convection velocity = 0.46U). The most striking feature is that the amplitude 
of the wave in the streak increases and even seems to ‘brake ’ in the last two frames 
of the sequence. This seems to be the nature of the breakdown involved in the 
‘blooming’ cycle and was observed to a greater or lesser degree in all of the 
intermittency cycles that we studied. 

The flow field described in conjunction with figures 2&24 corresponds to the 
second frame in the sequence in figure 25. Recall that there is a compact streamwise 
vortex rotating clockwise in the page that overlays the lifted streak. In the upstream 
part of the figure, i t  lies close to  the wall and has rolled the wall layer around itself 
(figure 22e). This is the part of the wave that bends to the right. I n  the downstream 
part of the figure, the sloping vortex lies above the wall layer, is bigger and slower, 
and has not yet rolled the wall layer. At this point, the layer is pushed left under the 
vortex, and the streak bends to the left. As time passes, the streamwise vortex 
continues to wrap the layer, and this happens faster in the upstream region where the 
core is more compact with stronger rotation (see figure 26). As a consequence, the 
rightward bend becomes more pronounced and travels forward. This is seen as the 
travelling kink in the streak in successive frames of figure 25. 

Up to this point, the flow field in the neighbourhood of the streak has only a mild 
streamwise variation, and w, remains almost steady. It can be easily shown that the 
stretching and tilting terms in the equation for w, vanish identically if a/ax = 0. As 
pointed out above, the streamwise vortices probably grow as a result of the forward 
tilt of the prevailing transverse vorticity. This is a slow process, depending on the 
deviation from two-dimensionality produced by the undulation of the streak and by 
the inclination of the vortex away from the wall, both of which are initially small. 
Eventually, however, the kink in the streak becomes very pronounced. The flow 
becomes very three-dimensional and the stretching term for w, suddenly becomes 
active and creates new streamwise vorticity. 
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FIGURE 27. Vorticity production terms in the evolution equation for the vorticity (wall units). 
Time history is same as in figure 18. (a, b)  Total time derivative; solid line: IDw,/Dtl; dashed: 
IDwJDtl. (a) y+ < 10, (b)  y+ > 10. (c) Tilting and stretching terms for streamwise vorticity: w - V U .  

This process can be followed in figure 27, which is a time history of the maximum 
magnitudes of the total derivatives DwJDt and Dw,/Dt during the intermittency 
cycle. Figure 27 (a )  refers to the sublayer, y+ < 10, while 27 ( b )  refers to y+ > 10. In  
the sublayer, both derivatives are roughly of the same magnitude and peak sharply 
during the active part of the cycle. We have determined by direct computation that 
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the largest contribution in this region is from the viscous terms in the vorticity 
equation. Outside the sublayer, however, where stretching and diffusion are of the 
same order, w, is still very active, while ox is relatively quiescent as a consequence 
of the small magnitude of the streamwise derivatives. The stretching term in w, is 
active only during the peaks of the cycle when local three-dimcnsionality is induccd 
by the breaking of the kink on the streak (figure 27c) .  The details of the three- 
dimensional interaction are complicated and are still not completely understood. The 
analysis of a few flow fields suggests that, as the head of the rolled vortex layer 
overtakes the root of the one just ahead of it, the shear from the front vortex layer 
acts on the wy component of the higher one and tilts it forward, creating a new strong 
w, vortex that regenerates the cycle. This process is consistent with detailed 
observations of the location of the high-ao,/at regions in the flow. 

6. Conclusions 
We have shown that turbulent channel flow can be sustained indefinitely in a 

computational domain that consists of a strictly periodic two-dimensional arrange- 
ment of identical subunits, each of which contains essentially a single set of wall 
structures. This simplified model, in which the small scales of wall turbulence are well 
resolved but the long-range decorrelation characteristic of turbulence is not, 
displayed low-order statistics that are in very good agreement with those of natural 
turbulent flows, a t  least below y+ = 40. The minimal span and streamwise length of 
this basic subunit (the minimum critical wavelengths) were determined as the 
minimum size of the periodic computational box that would sustained turbulence. 
The minimal spanwise extent was shown to scale in wall variables and to be equal to 
approximately A: = 100. This value has been widely observed as the most probable 
value for sublayer streak spacing in natural flows, and the present result gives it a 
dynamical rather than statistical significance. The exploration of the range of 
streamwise lengths was less extensive than that of spanwise wavelength and the 
results less conclusive, but the values obtained, h,f x 250-350, are also of the same 
order as the experimental observations of vortices near a wall. These computational 
boxes are too small to adequately represent the flow in the outer layer, and the 
agreement with experiments in that region is poor. Indeed, we found interesting 
solutions in which turbulence resides only at a single wall for long periods, while the 
flow at  the other wall is relatively quiesccnt. The fact that the turbulent wall 
statistics remain fairly good even in those cases indicates a high degree of 
independence of the flows in the inner and outer rcgions of the turbulent layers. In 
the highest-Reynolds-number simulation with very narrow boxes, the near-wall 
statistics begin to dctcriorate, and this coincides with the disappearance of the last 
traces of a logarithmic region in the mean velocity profile. This confirms the role of 
the log region as the outer boundary for the near-wall turbulence, and the results 
summarized above suggests that i t  may indeed be the only one needed to ensure a 
correct interaction. 

Another interesting result is the identification of a very long, Utlh w 100, 
intermittency cycle, during which all of the characteristic turbulent intensities vary 
strongly. This very long timescale, during which the wall structures are convected 
several thousand wall units, implies that the structures arc very stable, and we 
suggest that  this may be related to the very long streamwise extent of the sublayer 
streaks observed in experiments. A study of the wall-stress histories in decaying flow 
fields suggest that this cycle is thc regeneration mechanism for the structures in the 
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wall region and is ultimately responsible for the long-time survival of turbulence in 
the channel. 

We have also identified the structural elements of the vorticity field in each of the 
basic flow cells. As expected, each computational box contains a single low-speed 
sublayer streak overlaid by a single detached shear layer of complicated geometry. 
We have shown that these shear layers are pulled away sideways from the wall by the 
action of a compact streamwise vortex, and that the gap left in the wall vorticity 
layer as it is lifted is the commonly observed low-speed sublayer streak. Finally, we 
have identified a mechanism which links all of these elements as they evolve together 
during the quiescent phase of the intermittency cycle and which is consistent with 
its long duration. A preliminary model for the active phase of the cycle is also 
presented. 

In  summary, we have identified a system that exhibits many of the characteristics 
of near-wall turbulence in fully developed turbulent channels and that is appreciably 
simpler than the full channel, and we have used it to study the structure and 
dynamics of turbulence in the near-wall region. Beyond the specific results of this 
study, we believe that the simplified system itself will be very useful in future 
investigations of wall turbulence and its control in a simpler and more economical 
setting than the full numerical simulation of complete flows. 

We are grateful to Drs J. Kim and R. S. Rogallo for helpful comments on a draft 
of this manuscript. 
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